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ANALYSIS OF A STRUCTURE WITH A RANDOM GEOMETRY

by

J. Lyell Sanders Jr.

Introduction

A metal polycrystal, a nonwoven fabric such as felt, a suspension of

particles of random size, shape, and location in a viscous fluid, are examples

of what we mean by a structure with a random geometry. The problem of interest

in connection with such structures is the determination of some average property

such as the effective Young's modulus or the effective viscosity or perhaps

the probability density function of these properties. Solutions satisfactory

for practical purposes to a fair number of such problems have appeared in the

literature, but the author knows of no instance in which some (nontrivial)

average property of a random structure has been determined exactly. The

difficulty is not in solving some known mathematical equation, but rather in

reducing such problems to exact mathematical terms. The purpose of the present

paper is to become better acquainted with the nature of the problem by mans

of an exact analysis of a very simple random structure.
0

The paper is concerned with the analysis of a structure which is essentially

one-dimensional. It turns out that the analysis of this structure is much like

the analysis of a Markov process. The fact that a spacial coordinate replaces

the time-like independent variable of a Markov process makes for some

complication as might be expected since boundary value problems are generally

more complicated than initial value problems. The results obtained give no

0
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clear indication of how to approach the exact analysis of any physical problem

but suggest that the next step should probably be to invent some two-dimensional

problem sufficiently simple to be analyzed and not so complicated as a real

physical problem is likely to be.

Analysis of a Random Structure

The structure to be considered is composed of a uniform elastic rod

pin-jointed to a series of elastic beams which are built-in to a rigid

foundation as shown in Figure 1.

-0 A,-,elastic beam elastic rod

x
4 -- riid foundation

Figure 1

The beams are randomly spaced with, on the average, N beams per unit length.

In other words the probability of finding a beam in a length 8x is equal to

N8x . If the random variable y is the distance between successive beams then,
0

as is well known in such cases, the probability density function (p.d.f.) of y

is liven byethe Poisson law We-Ny . 0For the present suppose the rod is semi-

infinite with one end at the origin. Let a force F be applied to the rod at

the origin and l1t the resulting displacement of the end be u . Let a a F/u

be called the stiffness of the structure. Consider the problem of finding the

p.d.f. P(a) of the random variable a • First add on a beam at the origin.

The stiffness of the augmented structure a' is
0

S at. a + az (1)
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where a is the stiffness of a beam with respect to a load at its tip. The

p.d.f. er is thus

Q ) - P(O) P(a'-) (2)

Now add a piece of rod of length y . The stiffness a" of the augmented

structure is now given by

1 _1 1(3= + (3)

where X/L is the stiffness of a rod of length L . The conditional

probability density function (c.p.d.f.) of a" gi-en a' is

T(V";C') - R(y) Jd,, -R(w-- ) ,, (4)

where

R(y) NomNy  y > o
(5)=0 y <O

and the p.d.f. of a" is

fT(f" ;a' )Q(U' )da' (6)

Now the augmented structure with the beam and rod added is statistically the

same as the original structure, therefore the p.d.f. of a" must be the same

as the p.d.f. of C and hence

eP(@) - e- 'P(V'.-a)dVI' (7)

The integral equation (7) is easily reducible to the following differential-

difference equation

2
(aP)' I iiMP *-KNiP(O-a) (8)
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where a prime denotes differentiation with respect to C. If the beams have

a random stiffness p with p.d.f. S(F) we obtain instead of (8) the following

(2p P NP - -xN f P(C)S(O-C)dg (9)

0 0

Equations (8) or (9) must be solved subject to the normalization condition

f P(a)de - 1 (10)

0

Let PL(p) denote the Laplace transform of P(w) . Weehave

PL - f P(O)erPde PI0) - f P(O)dw0 0 }I1

P ) 1 PL(0)-
0

where a bar over a quantity indicates its mean value. Taking the Laplace

transform of Eq. (9) leads to

1-8LP," - RN .a0 (12)

L p L

In the special case 8(p) -I • "P / a  for which p - a the exact solution for

P(e) is

where X1  is the modified Bessel function of the second kind.

It is interesting to make some comparisons with the stiffness of a similar

structure with uniformly spaced beams. Let the beams be spaced uniformly at a

/C
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distance 1IN and have a uniform stiffness a , then the stiffness of the

structure (with no beam at the finite end) is

a 1 - (a v- _(14)

Nov let a- 0 , N ai and require aN to remain finite, then

22  a xN (15)

From Eq. (12) and with p - -SL() - a

a 2. lim pWaKN (16)
p-0 L

the same result as in (15), but in general 2 02

0

Structure of Finite Lenath

The solution of the problem in the preceding section for a semi-infinite0

structure depended on a special device which will not work for a structure of

finite length. Consider now a somewhat more complicated problem for the

structure shown in Figure 2.

0 x

Figure 2

• Let it be required to find the joint p.d.f. R(a,u,x) where a and u are

the stiffness and displacement at the right end. The left end of the structure

is subjected to a load F as shown and u is taken positive to the left. This

time augment the structure by an infinitesimal piece in such a way as to leave
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the statistical character of the structure undisturbed. Let Rl1 (,u,x+6x) be

the new R on condition there is no beam in the added piece of length 6x

and R2 be the new R on condition there is a beam in the added length. The

unconditional new R is given by

R(5,u,x+6x) - RI(a,u,x+6x)(1-N6x) + R2 (o,u,x+6x)N6x (17)

since we do not or do include a beam in the added piece with probabilities

1 - N8x and N8x respectively. Expressions for R1 and R2 are found as

follows.

1. No beams added. Let a' and u' be the new displacement and stiffness.

These are related to a and u as follows

or (18)

1 1 6x

According to the calculus of probabilities

R1 (&',u',x+8x)da'du' = R(a,u,x)dadu (19)

where

aou u K 2
d Jdu - "(-,u - I:W 61)

2d'du (20)

and where J is the Jacobian of the change of variable. From this it follows

R (a ,u',x+6x) - R ,u ,"x)( ) 2  (21)

* 2. Bean added. In this cuae the change in stiffness due to the added rod may

be neglected and we have

a" - + 1 (22)

The added bean exerts a force a on the 61d*'tructure and causes a

displacement to the. right by an amount
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U" - (23)

but

III u - u" (24)

therefor

uu- u or u=2a 4a )

In this case

j .(25)

and

R2 (O',u',x+8x) = R(a,u,x) = R(u'-a, ' x) (26)
-a at-Oa ,x) -

Primes can now be dropped with no loss in sense and (17) becomes

R(a,u,x+8x) - ,u,X) -. (- ) +  R(-, u x)N6x (27)K-Obx K-06Xa-a f-

Subtract R(a,u,x) from both sides, divide by 6x and let 6x - 0 , the

result is

a " 2 . R(c-a, ,x) (28)

If the beam stiffness is random with p.d.f. 8(P) then the result is

(a R) + NR - No R(a-g, flu x)B(C)(9

0

These equations are to be solved subject to the usual normalising condition

and the initial condition R(c u,O) - 0 for Ou 0 F . The equation for the

marginal distribution P(ox) may be obtained from (29) by integration over

all values of u . The result is

ap _ l6 2 (0I - -" - (a P) - NP + N P(v-C)S(C)d (30)
0
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Appropriate conditions on the solution of this equation are P(CO) given and

J P(ax)4j - 1 . If the left and is attached to a spring of stiffness a*

0

for example, the initial condition is P(9,0) - 8 ( *) . No solutions of

Eq. (30) have been obtained by the author except the one given in the last

section for the semi-infinite structure when Eq. (30) reduces to Eq. (9) because

aP
-=0

Properties at an Interior Point

Let us nov turn our attention to the problem of determining the joint p.d.f.

of o , u , and force f (in the rod) at a point x interior to a structure of

finite length L . This problem may be solved in terms of previously determined

////// /,I77/7 7I f

0 Figure 3 x L

probability density functions if we make a cut in the structure at the point x

and then determine the forces and displacements necessary to restore continuity

and equilibrium.

ff

1 2

x

Figure 4
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Figure 4 shows the cut structure near the point x . Let:

-, 0 the stiffness at the point 1

a2 - the stiffness at the point 2

a - the stiffness of the continuous structure at x

f - the force necessary to effect the closure which equals the force at

x on the continuous structure

u0 M the gap between 1 and 2 before the two pieces of the structure

are joined together

u - the displacement at x of the continuous structure (positive to the

left)

u1 - displacement of point 1 after the force f is applied

u2 - displacement of point 2 after the force f is applied

We have

u -u0  f/ 1  (31)u1  0 1

u - f/a'2  (32)

The structure will be continuous and in equilibrium if f and u are

determined from

u1  u2  u (33)

This gives

f - 2  (34)

aluO
U -(35)

The stiffness of the joined structure is obviously

' -1 + a 2 (36)
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Now since a and u0  are independent of a 2 we may write

p(@,u,f,x) - R(eruox)P('2,L-x)J( u(37)

where p is the required p.d.f. and R and P have been previously defined.

Equations (34), (35) and (36) may be solved for cr 1 02 and u0 with the result

u Vu 2/(Vu-f)

l -f/u (38)

2 f/u

From (38) we calculate J to be

3 -/(Vu-f) (39)

The result is thus

-f IPx)P( -,L-x - ) UL2)P> -L >0

uf u-f u

- 0 -f< 0 or a< -f  (40)
U U

With a sufficient amount of effort one can derive an equation resembling

a Fokker-Planck equation satisfied by p , but the results for L finite or

infinite differ from each other. The author has been unable to arrive at these

equations from first principles or to determine whether or not these equations

together with certain boundary conditions constitute an appropriate formulation

of the problem. The equation in question contains but not 6 and the

association of such an equation with two point boundary conditions seems

inappropriate. On the other hand there does not seem to be any reasonable

second-order Fokker-Planck equation satisfied by p
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